organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Wang, Hui-Min Liu* and Wen-Qin Zhang

Department of Chemistry, Tianjin University, Tianjin 300072, People's Repulic of China

Correspondence e-mail: szliuhm@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.039 wR factor = 0.107 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Hydroxy-4-methoxybenzaldehyde (pyridine-2-carbonyl)hydrazone

The molecule of the title compound, $C_{14}H_{13}N_3O_3$, is nearly planar. The crystal structure is stabilized mainly through intermolecular $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds

Received 1 September 2005 Accepted 18 October 2005 Online 22 October 2005

Comment

Schiff bases have received considerable attention because of their pharmacological activity (Parashar *et al.*, 1988) and their photochromic properties (Hadjoudis *et al.*, 1987). A series of carboxyl hydrazone complexes, similar to the title compound, has been reported previously (Yu *et al.*, 2005; Pan & Yang, 2005a,b).

Fig. 1 shows the molecular structure of (I). The molecule is nearly planar, with an r.m.s. deviation of 0.0462 (2) Å, which means that there is extensive $p-\pi$ and $\pi-\pi$ conjugation through the whole molecule. An intermolecular O2– $H2B\cdots O1^{ii}$ [(ii): 1 - x, 2 - y, 1 - z] hydrogen bond exists between the hydroxy H atom and the carbonyl O atom, resulting in a centrosymmetric dimer. An intramolecular N– $H\cdots N$ hydrogen bond (Fig. 1) also promotes planarity of the molecular backbone. In addition, intermolecular N2– $H2A\cdots O3^{i}$ and C7– $H7\cdots O3^{i}$ [(i): $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$] hydrogen bonds involving the methoxy atom (Table 2) form a sixmembered ring described by the graph-set descriptor $R_2^1(6)$, linking the dimers in the *bc* plane (Fig. 2).

A view of the molecule of (I), showing the atom-labelling scheme and an intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 30% probability level.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 2

The packing of (I), viewed along the a axis, showing the intermolecular hydrogen bonding interactions (dashed lines).

Experimental

The title compound was synthesized according to the method of Yu *et al.* (2005). Single crystals of (I), suitable for X-ray diffraction, were obtained by recrystallization from an ethanol-water solution (2:1 ν/ν).

Crystal data

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.970, T_{\max} = 0.983$ 7403 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.042744 reflections 191 parameters H-atom parameters constrained $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3286 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 294 (2) K Block, colourless $0.24 \times 0.22 \times 0.18 \text{ mm}$

2744 independent reflections 2124 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.5^{\circ}$ $h = -9 \rightarrow 4$ $k = -16 \rightarrow 16$ $I = -15 \rightarrow 16$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0447P)^{2} + 0.4125P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{ Å}^{-3}$ Extinction correction: *SHELXL97*Extinction coefficient: 0.072 (4)

Table 1			
Selected	geometric parameters	(Å.	°).

O1-C6	1.2286 (18)	N3-C7	1.2745 (19)
N2-N3	1.3881 (17)	C7-C8	1.457 (2)
C6-N2-N3	121.83 (13)	N3-C7-C8	123.17 (13)
C7-N3-N2	113.58 (12)		
C6-N2-N3-C7	-177.77 (14)	N1-C5-C6-O1	171.67 (15)
C5-N1-C1-C2	-0.8(3)	N2-N3-C7-C8	179.82 (13)
N3-N2-C6-O1	-2.8(2)	N3-C7-C8-C13	6.5 (2)
N3-N2-C6-C5	176.80 (13)		

Table 2			
Hvdrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O3^{i}$ $O2-H2B\cdots O1^{ii}$ $C7-H7\cdots O3^{i}$ $N2-H2A\cdots N1^{iii}$	0.89 (2) 0.87 (2) 0.93 0.89 (2)	2.26 (2) 1.85 (2) 2.33 2.18 (2)	3.093 (2) 2.722 (2) 3.203 (2) 2.629 (2)	155 (2) 173 (2) 155 110 (1)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y, z.

All H atoms bound to C were positioned geometrically and allowed to ride on their parent atoms, with d(C-H)=0.93 Å for aromatic C and d(C-H)=0.96 Å for methyl C, $U_{iso}(H)=1.2U_{eq}(C)$ for aromatic C and $U_{iso}(H)=1.5U_{eq}(C)$ for methyl C. The H atoms attached to the amido N atom and the hydroxy O atom were located in a difference map, and refined as riding with N2–H2A = 0.892 Å and O2–H2B = 0.871 Å. The U_{iso} values for H2A and H2B were refined freely.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). *Tetrahedron*, **43**, 1345–1360.
- Pan, F. Y. & Yang, J. G. (2005a). Acta Cryst. E61, 0354-0355.
- Pan, F. Y. & Yang, J. G. (2005b). Acta Cryst. E61, 0352-0353.
- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta. 151, 201–208.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Yu, M., Chen, X. & Jing, Z. L. (2005). Acta Cryst. E61, o1345-o1346.